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SUMMARY

Self-adaptive subgrid-scale models are proposed and assessed. They are based on the use of the
Germano–Lilly dynamic procedure and the use of a selection function. These models, which do not
incorporate any information related to the location of the solid walls, are well suited for the simulation
of turbulent �ows in complex geometries. Their reliability, when used together with a second-order
non-dissipative numerical method, is assessed on the plane channel con�guration for two values of the
Reynolds number (Re�=180 and 395) for two grid resolutions. The selection function approach for
deriving self-adaptive subgrid models is found to yield results very similar to those obtained using a
dynamic model, without requiring any numerical stabilization procedure. The use of the selection func-
tion is shown to be the only one which is able to capture the backscatter process in the bu�er layer,
while producing a strictly positive subgrid viscosity. This is demonstrated to be linked to the capability
of the selection function to permit a decorrelation between the mean strain and the �uctuations of the
subgrid stresses. That point is illustrated thanks to the introduction of a new decomposition of the
�uctuating strain subgrid dissipation. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large-eddy simulation (LES, see Reference [1] for a general review) has already been found
to be a reliable tool for the unsteady simulation of turbulent, fully developed, equilibrium
�ows. For this class of applications, both the subgrid-scale (SGS) model and the numerical
scheme are generally optimized, i.e. all the available knowledge about the particular �ow dy-
namics is taken into account when designing the SGS model (e.g. homogeneous directions are
used for speci�c purposes), while very high order accurate numerical methods (e.g. spectral,
pseudo-spectral or Pad�e) are used, which ensure that the numerical error will not mask the
physical SGS model.
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But even in the simple case of the plane channel �ow, recent studies have demonstrated
that the classical representation of the interscale transfer as a net drain of the resolved kinetic
energy (i.e. the forward energy cascade) is no longer valid. By splitting the subgrid dissipation
�sgs into the sum of the mean strain dissipation �MS and the �uctuating strain dissipation �FS,
H�artel et al. [2] found that there exists a region, located in the bu�er zone of the boundary
layer, where the latter becomes negative in the mean. This backscatter was shown by Piomelli
et al. [3] to be strongly correlated with the presence of sweeps, while the forward scatter is
associated with ejections. In that zone, an SGS model should be able to account for the net
backscatter e�ect. It was demonstrated in H�artel and Kleiser [4] that none of the classical
subgrid-viscosity models (Smagorinsky, Structure Function, Germano-Lilly dynamic model)
is able to account for net backscatter, resulting in a strictly positive �uctuating strain SGS
dissipation.
Another point is that the use of LES for industrial �ows is still a challenging topic, be-

cause most of the advantages present in academic �ows, like isotropic turbulence, plane
channel �ow, time developing mixing layer, etc. are now lost. Such �ows involve com-
plex dynamics and complex geometries, and most of the techniques that were designed
to recover good results for academic con�gurations cannot be used anymore. As an ex-
ample, let us consider that a correct description of the boundary layers is of great im-
portance for such applications (heat transfer, skin friction, �uid–structure interaction), and
that the SGS models must allow the simulation to capture correctly its dynamics. Because
several solid walls are generally involved, and a multi-domain technique may be used as
in Mary and Sagaut [5], the distance to the wall is often di�cult to evaluate and then
must not be incorporated into the SGS model. Thus, the use of a van Driest-like damp-
ing function, as done in Piomelli et al. [6], is then to be excluded. The averaging tech-
nique along a plane parallel to the wall (i.e. in homogeneous directions), as employed in
Schumann’s split SGS model [7], has also to be avoided: because when using an automatic
mesh generator, the mesh is not constrained to stay at a given distance from the wall ex-
pressed in wall units, and non-equilibrium spatially-developing boundary layers should be
considered. In these cases, the grid points belonging to the same plane do not constitute
a statistical equivalence class, i.e. the probability density function of the velocity compo-
nent is not identical for all these points. As a consequence, the plane averaging operator
is not equivalent to a statistical average, and cannot be employed. The case of unstruc-
tured meshes is even more constraining, because the concept of grid plane is no longer
valid.
The aim of the present work is to propose and assess SGS models which are (i) able

to reproduce correctly the interscale energy transfer between resolved and subgrid scales,
including backscatter in the near-wall region and, (ii) suitable for complex geometries, i.e.
which involve only a 5-point (in each direction) compact stencil. These models will be referred
to as self-adaptive models, because they do not incorporate any information related to the
location of the solid walls. They are obtained in the present work using a selection function,
as proposed by David [8] for modifying the Structure Function model (see also M�etais and
Lesieur [9] and Sagaut [1]) for the capture of transition and modi�ed in order to appear
as a continuous function by Sagaut and Tro� [10]. New self-adaptive versions of two basic
subgrid-viscosity models, (Smagorinsky, Mixed Scale Model) are proposed in the present
paper, to demonstrate the generality of the proposed self-adaptation procedure. Results will
be compared to those obtained using the Germano–Lilly dynamic model based on a fully
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three-dimensional test �lter and the selective Structure Function model. It is worth noting
that almost all the results previously obtained with a dynamic model on the channel �ow
con�guration were based on two-dimensional test �lters.
Another important point is that we are interested here in analysing the behaviour of the

models in conditions which are close to those of future industrial applications. Thus, mesh size
analogous to those used in complex con�gurations at high Reynolds number are employed,
leading to the de�nition of coarse grids when compared to those found in papers dealing
with computations of ‘best’ possible LES results. In the same spirit, a second-order accurate
numerical scheme will be employed.
The selected test case is the incompressible channel �ow, because corresponding complete

data sets are available. Two Reynolds numbers based on the friction velocity are considered:
Re�=180 and 395, corresponding to the direct numerical simulation (DNS) data base of Kim
et al. [11] and Mansour et al. [12]. Two grids are considered, in order to analyse the response
of such SGS models for various degrees of resolution.
To get a deeper insight into the response of the SGS models, the SGS dissipation is

investigated on the grounds of the double decomposition introduced by H�artel et al. [2]. To
assess the possibility of reproducing backscatter with strictly positive subgrid-viscosity SGS
models, a new triple decomposition of the �uctuating strain SGS decomposition is proposed.
The paper is organized as follows: Section 2 describes the governing equations and the

selected SGS models, while Section 3 presents the numerical method. Characteristics of the
di�erent simulations are given in Section 4. The results are compared to DNS data and
dynamic model results in Section 5, and the SGS models behaviour is analysed in Section 6.
Conclusions are given in Section 7.

2. GOVERNING EQUATIONS AND SGS MODELS

2.1. Filtered Navier–Stokes equations

The governing equations for the large-eddy simulation of an incompressible �uid �ow are
derived by applying a convolution �lter to the Navier–Stokes equations. The resulting set of
non-dimensional equations reads:

@ �u∼
@t
+∇ · ( �u∼ ⊗ �u∼ )=−∇ �p+

1
Re

∇2 �u∼ −∇ · � (1)

∇ · �u∼=0 (2)

where the Reynolds number is calculated using the reference velocity U0 and the reference
lengthscale L0 of the non-dimensionalization. The subgrid tensor � is de�ned as

�= �u∼ ⊗ �u∼ − u∼ ⊗ u∼ (3)

and needs to be parameterized. The SGS models used in the present study will be discussed in
the next section. Because only eddy-viscosity type models are considered, the isotropic part of
the SGS tensor is added to the �ltered pressure, leading to the de�nition of a pseudo-pressure
referred to as �:

�= �p+1
3�kk (4)
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where

�kk=Tr(�) (5)

A Poisson equation for the pseudo-pressure � is obtained by applying a Divergence operator
to the momentum equation (1), leading to

∇ ·∇�=−∇ ·∇ · ( �u∼ ⊗ �u∼+�
D) (6)

with

�D=�− 1
3 Tr(�)I (7)

2.2. Subgrid-scale models

All the SGS models studied in the present work belong to the eddy-viscosity family, and
therefore assume a linear relationship between the deviatoric part of the subgrid tensor �D and
the resolved stress tensor �S:

�D=−2�sgs �S; with �S= 1
2(∇ �u∼+∇T �u∼ ) (8)

where �sgs is the subgrid viscosity, which remains to be determined. Three basic models are
considered here. They all depend exclusively on the resolved scales, and do not involve any
additional transport equation. The subgrid viscosity appears then as a function of the cut-o�
lengthscale �	 and the resolved velocity �eld �u∼ .
The Smagorinsky model [13] assumes the following dependency:

�sgs( �	; �u∼ )=(c1 �	)
2 | �S | ; | �S |=

√
2 �Sij �Sij (9)

where the constant c1 is taken equal to 0.18 for isotropic turbulence and is lowered to 0.1
for plane channel �ow in Deardor� [14], and �	 is the cut-o� lengthscale. In the present
computations, �	 is evaluated as �	=(	x	y	z)1=3.
The Structure Function model, as proposed by M�etais and Lesieur [9], reads:

�sgs( �	; �u∼ )=c2 �	
√
�F2(r) (10)

where c2 is a constant equal to 0.063 and the second-order structure function of the resolved
velocity �eld �F2(r) is calculated performing the following surface integration:

�F2(r)=
∫
|x′|=r

| �u∼ (x∼ + x′∼ )− �u∼ (x∼ ) |2 d2s (11)

The Mixed Scale model, as proposed by Sagaut [15], exhibits a triple dependency on the
vorticity of the resolved scales �!, the kinetic energy of the highest resolved frequencies qc
and the cut-o� lengthscale:

�sgs( �	; �u∼ )=c3 | �!∼ |1=2q1=4c �	3=2; �!∼=∇× �u∼ (12)

The value of the constant c3 is 0.06. The quantity qc represents the kinetic energy of the
test �eld �u′∼= �u∼− �̃u∼ , which is extracted from the resolved velocity �eld through the application

of a test �lter associated to the cut-o� lengthscale �̃	¿ �	 (hereafter represented by the tilde):

qc= 1
2 �u

′
i �u

′
i (13)
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These three models have originally been developed assuming that the simulated �ow is
turbulent, fully developed and isotropic in the whole computational domain, and a priori do
not incorporate any information related to a possible departure of the simulated �ow�eld from
these assumptions. To obtain an automatic adaptation of the model for inhomogeneous �ows,
where the basic versions of the models may lead to dramatic errors on the computed solution,
two techniques have been employed in the present work, which are now brie�y presented.

2.3. Dynamic models

The �rst solution is to use the Germano–Lilly [16, 17] dynamic procedure to compute the
constant of the subgrid-viscosity model, leading to the de�nition of dynamic models. This
procedure is based on the Germano identity, which links the subgrid tensor � to the equivalent
tensor obtained at another �ltering level (the aforementioned test �lter). Rewriting the relation
(8) for the two �ltering levels under the symbolic form:

�Dij=C�ij( �u∼ ; �	); TDij =C�ij( �̃u∼ ; �̃	) (14)

where

�ij=
−2�sgs �Sij
C

(15)

the constant C of the eddy-viscosity model is computed as

C=
mijLij
mklmkl

(16)

with

mij=�ij( �̃u∼ ; �̃	)− �̃ij( �u∼ ; �	); Lij= �̃ui �uj− �̃ui �̃uj (17)

The use of the dynamic procedure was shown to enable the de�nition of subgrid viscosities
to vanish automatically in the near-wall region of wall bounded �ows.

2.4. Selective models

Another possibility for designing self-adaptive SGS models is to combine a basic subgrid-
viscosity model with a selection function, as originally proposed by David [8] and Lesieur
and M�etais [18]. This selection function, referred to as fs, checks the structural properties of
the test �eld �u′, and turns o� the SGS model when these properties do not correspond to
those expected from a fully turbulent �eld. In practice, a velocity �eld will be considered as
turbulent and requiring a SGS (and the SGS model will be turned on) if the local angular
�uctuation of the instantaneous �ltered vorticity is higher than a given threshold angle �0
obtained by David [8] with a DNS in homogeneous isentropic turbulence. A pic is found in
the neighbourhood of 20◦.
Rather than the original Boolean selection function proposed by David [8], we use here the

modi�ed continuous selection function proposed in Sagaut and Tro� [10] in order to prevent
numerical problems:

fs(�; �0)=

{
1 if �¿�0
r(�; �0)n else

(18)
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where the function r is de�ned as

r(�; �0)=
tan2(�=2)
tan2(�0=2)

(19)

a priori tests show that the best value for n is n=2, the calculations presented hereafter have
been performed using this value. Using the aforementioned notations, the modi�ed SGS model
reads:

�Dij=C
′fs(�; �0)�ij( �u∼ ; �	) (20)

Following David’s recommendation deduced from isotropic turbulence simulations, the con-
stant is evaluated as C ′=1:65×C in order to obtain the same domain-averaged mean value
of the subgrid viscosity as for non-selective models, and the threshold angle �0 is taken equal
to 20◦.

3. NUMERICAL METHOD

3.1. Spatial discretization

The discretized Navier–Stokes equations are solved on a non-staggered grid. Discrete oper-
ators of the space-derivatives are evaluated after rewriting the continuous operators in gen-
eralized co-ordinates. Taking into account the fact that the grid is Cartesian in our case
(i.e. x1=x1(�1); x2=x2(�2); x3=x3(�3), where (x1; x2; x3) and (�1; �2; �3) are the co-ordinates in
physical and reference frames, respectively), we get:

@�
@xi
=
1
J
@
@xk

(
J
@�k
@xi
�
)
=
@�
@�i
@�i
@xl
�il (21)

@2�
@xi@xj

=
1
J
@
@�l

(
@�l
@xj

@
@�k

(
J
@�k
@xi
�
))

(22)

where J=(@x1=@�1)(@x2=@�2)(@x3=@�3) is the Jacobian of the transformation.
Spatial derivatives are approximated using centred second-order accurate �nite di�erence

schemes. For �rst-order derivatives, the fully three-dimensional scheme presented in Lê et al.
[19] is employed, which reduces the ampli�cation of odd-even spurious modes. As an example,
the derivative in the �1 direction at the (i; j; k) node is approximated in the following way:(

@�
@�1

)
i; j; k

=
1

72	�1
(�i+1; j+1; k+1−�i−1; j+1; k+1+�i+1; j+1; k−1 − �i−1; j+1; k−1

+�i+1; j−1; k+1−�i−1; j−1; k+1 + �i+1; j−1; k−1−�i−1; j−1; k−1
+ 4 (�i+1; j; k+1−�i−1; j; k+1 + �i+1; j; k−1−�i−1; j; k−1
+�i+1; j−1; k−�i−1; j−1; k+�i+1; j+1; k − �i−1; j+1; k)
+16 (�i+1; j; k−�i−1; j; k)) (23)
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Following Kravenchko and Moin [20], the convection term is written in skew-symmetric
form, in order to reduce the aliasing error and to improve the stability of the method, yielding:

∇ · ( �un∼ ⊗ �un∼ )=
1
2
(∇ · ( �un∼ ⊗ �un∼ )+ �u

n
∼ ∇ �un∼ ) (24)

Second-order derivatives are discretized using compact 3-point operators Lê et al. [19].
Examples are:

@
@xi1

(
g
@�
@xi1

)
i; j; k

=
1

2	�21
(�i+1; j; k(gi; j; k+gi+1; j; k)− �i; j; k(2gi; j; k+gi+1; j; k+gi−1; j; k)

+�i−1; j; k(gi; j; k+gi−1; j; k)) (25)

@
@xi1

(
g
@�
@xi2

)
i; j; k

=
1

4	�1	�2
(gi+1; j; k(�i+1; j+1; k−�i+1; j−1; k)

− gi−1; j; k(�i−1; j+1; k−�i−1; j−1; k)) (26)

3.2. Time integration

Time integration is achieved using a second-order accurate semi-implicit method. Convection
terms are treated using an explicit second-order Adams–Bashforth scheme, while the implicit
second-order backward di�erentiation formula (BDF) is employed for the molecular di�usion
term. A special treatment is used for the SGS terms, based on a splitting which uncouples
the dispersive terms from the dissipative ones:

∇ · �=∇ · (−�sgs(∇ �u∼+∇t �u∼ ))

=−∇�sgs · (∇ �u∼+∇t �u∼ )−�sgs∇2 �u∼ (27)

The �rst term of the right-hand side of Equation (27) has a dispersive character, and
is treated explicitely like the convection term in order to preserve the conditioning of the
implicit problem. The second term is treated implicitely, like the molecular di�usion, in order
to improve the numerical stability. Because the SGS viscosity appears as a strongly non-linear
function of the resolved quantities, it was chosen to use a �rst-order accurate linearization
for that term. The incompressibility constraint is enforced using an approximate projection
method in Lê et al. [19]. The resulting semi-discretized problem, written for the incremental
unknown 	 un∼ = un+1∼ − un∼ , reads:[

1−2	t
3

(
1
Re
+�nsgs

)
∇2
]
	un∼ =

1
3
	un−1∼ +

2	t
3

{(
1
Re
+�nsgs

)
∇2un∼ −∇�n

+(2∇�sgs : �S)∗ − (∇ · ( �u∼ ⊗ �u∼ ))
∗
}

(28)

where the star refers to the second-order Adams–Bashforth extrapolation:

�∗ ≡ 2�n−�n−1 (29)
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The pseudo-pressure �n is computed by solving the following semi-discrete Poisson equation:

−∇2�n=∇ ·∇ · ( �un∼ ⊗ �un∼ + (�D)n)− 2
	t

∇ · �un∼ +
1
2	t

∇ · �un−1∼ (30)

All linear systems coming from both the momentum and the Poisson equation are solved
using the Bi-CGSTAB algorithm proposed by van der Vorst [21]. The problem associated to
the Poisson equation with Neumann and periodic boundary conditions being ill-posed (see for
example Strikwerda [22]), the additional constraint that the pressure has a zero mean value
is imposed to recover a well-behaved problem.
Following the algorithm proposed by Deschamps [23], a time-adaptive homogeneous forcing

term, F1(t), is added to the momentum equation in order to keep a constant mass �ux across
the channel. The bulk velocity is given by the following relation:

�ub =
1
Lz

∫ Lz

0
〈 �u〉xy dz (31)

where 〈:〉xy operator stands for averaging over the xy plane, Lz is the width of the channel.
Integrating the result in the wall-normal direction, one obtains a time-dependent equation for
the bulk velocity, �ub:

d �ub
dt
+
1
Lz

∫ Lz

0
(〈 �u �w〉xy + 〈�13〉xy) dz︸ ︷︷ ︸

=0

= − 1
Lz

∫ Lz

0
F1(t) dz +

1
Lz

∫ Lz

0

1
Re

@2

@z@z
〈 �u〉xy dz (32)

This equation can be written as follows:

d �ub
dt
=−F1(t) + 1

Lz

[
1
Re

@
@z

〈 �u〉xy
]Lz
0︸ ︷︷ ︸

S(t)

(33)

The second term of right-hand side corresponds to the square of the wall friction velocity.
Supposing the forcing term F̃

(n)
1 at time step n is known then F̃

(n+1)
1 is computed using the

relation:

F̃
(n+1)
1 = F̃

(n)
1 + �(ũ(n+1)b − ũ(0)b ) + 	(ũ(n)b −ũ(0)b ) (34)

where ũ(0)b , ũ
(n)
b and ũ(n+1)b are, respectively, the bulk velocity (supposed to be conserved), the

bulk velocity at time step n and a �rst-order predictor of the bulk velocity at time step n+1
given by

ũ(n+1)b = ũ(n)b +	tS̃
(n)

(35)

A stability analysis shows that the algorithm is more e�cient for �=1 and 	=−0:5.
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3.3. SGS model implementation

Because no explicit information about the location of the wall is used for the parametrization of
the subgrid terms, fully three-dimensional versions of the selected SGS models are employed:
the 3D Structure Function is implemented, as described in Comte et al. [24], and a 3D test
�lter serves as a basis to evaluate the test �eld �u′. This test �lter results from the tensorial
product of the following 1D discrete �lter:

�̃l=
1
6 (�l−1+4�l + �l+1) (36)

The characteristic lengthscale of this �lter is equal to 2	x [25].
As usual, the dynamic model needs to be stabilized to carry out the simulation. A plane

averaging procedure of both the denominator and the numerator of the dynamic constant is
used.

3.4. Boundary conditions

Periodic boundary conditions are used for the pressure and the velocity in directions parallel to
the walls, i.e. x and y. No-slip conditions are imposed on the velocity �eld at the solid walls.
Following Gresho [26], a natural boundary condition obtained by considering the momentum
equation in the wall-normal direction is used for the pressure.

4. CHARACTERISTICS OF THE SIMULATIONS

Simulations were performed at Re�=180 and 395 (Re�=u��=�, u�=
√
�w=
 being the friction

velocity, � the channel half-width and � the kinematic viscosity), on two grids for each case.
These values of the friction Reynolds number correspond to the DNS data base of Kim et al.
[11] and Mansour et al. [12], which will be used for validation. Computational parameters
are given in Table I for Re�=180 and in Table II for Re�=395.
Based on previous DNS and LES, the size of the computational domain is taken equal to

Lx=4� and Ly=�, which, for all the considered cases, ensures that two-point correlations
in these two directions are negligible for separation distance of the order of a half of the
computational domain size. The mesh is uniform in homogeneous directions, and is distributed
following a hyperbolic tangent law in the wall normal direction.

Table I. Con�guration and mesh characteristics for the current simulations (Re�=180). Symbol ‘+’refers
to wall units. For DNS computations the �rst number of grid point corresponds to reference simulations,
while the number in parentheses corresponds to the number of grid points required to mesh the current

computational domain with the same resolution.

Lx=4�� Ly=�� Lz=2�
Lx+=2262 Ly+=566 Lz+=360

mx my mz 	x+ 	y+ min(	z+)

Fine mesh 64 64 67 35 8.8 1
Coarse mesh 32 32 67 71 17.6 1
Kim et al. 128 (188) 128 (80) 129 12 7 0.05
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Table II. Con�guration and mesh characteristics for the current simulations (Re�=395). Symbol ‘+’
refers to wall units. For DNS computations the �rst number of grid point corresponds to reference
simulations, while the number between parentheses would correspond to the number of grid points

required to mesh the present computational domain with the same resolution.

Lx=4�� Ly=�� Lz=2�

Lx+=4963 Ly+=1252 Lz+=790

mx my mz 	x+ 	y+ min(	z+)

Fine mesh 64 64 67 78.4 18.4 1
Coarse mesh 32 32 67 156.8 36.8 1
Mansour et al. 256 (497) 192 (192) 193 (193) 10 6.5 0.05

The time unit t+ is based on the friction velocity and the molecular viscosity by

t+=
t u2�
�

(37)

The time step 	t is chosen such that 	t+=9:81× 10−3 and 1:97× 10−2, respectively,
for the Re�=180 and 395 cases, ensuring a good temporal representation of the near-wall
dynamics.
The time-�ltering e�ects due to time discretization are then assumed to be negligible

compared to the spatial �ltering ones.
For each case, the following four SGS models are used: dynamic Smagorinsky (Sdyn),

selective versions of the Smagorinsky model (Sslc), the Structure Function model (SFslc)
and the Mixed Scale model (MSslc). A coarse-resolution simulation (DNSc), i.e. a simulation
without an SGS model, is also performed in each case to check the relative in�uence of the
SGS terms on the results.
Statistical moments have been computed by performing an averaging in both time and

homogeneous directions. It was checked that all the results are fully averaged over long
enough time. At least 108 samples, collected over a non-dimensional time equal to 6 cross-
channel times, were used. The statistical average is noted by brackets 〈 〉.

5. VALIDATION

LES calculations are �rst validated by performing comparisons of results for the mean velocity
�eld and typical turbulent quantities with DNS data of Kim et al. [11] for the Re�=180 case,
and with DNS data of Mansour et al. [12] for the Re�=395 case. Because the e�ective �lter
of the LES simulations, i.e. its exact characteristic lengthscale and mathematical expression,
remains unknown, it was chosen to use DNS data without �ltering or de�ltering LES data. As
stated by H�artel and Kleiser [4] and Winckelmans et al. [27], such comparisons are meaningful
when dealing with quantities derived from the mean velocity pro�le, but may induce some
erroneous conjectures when applied to turbulent quantities, because of unresolved turbulent
�uctuations. DNS data will then be considered as target values for LES computations when
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Table III. Computed relative error (in %) on the friction velocity u� and mean centreline velocity
Uc, with respect to DNS data.

u� Uc

Re�=180 Re�=395 Re�=180 Re�=395

Coarse Fine Coarse Fine Coarse Fine Coarse Fine

DNSc +13 +15 +2:8 +15 −4:6 −3:9 −5:8 −4:9
Sdyn +9:4 +15 +3 +12 −4:6 −3:6 −5:4 −3:8
Sslc +1:1 +5:6 −22 −9 −3:7 −3:8 −5 −3
SFslc +4:4 +12 −5 +5 −3:2 −3:1 −5:1 −3:6
MSslc −2:8 +1:7 −18 −9:5 −3:8 −3:1 −4:3 −3:8

dealing with the mean velocity �eld, but not when considering the higher order statistical
moments.

5.1. Mean velocity �eld

The quality of the recovery of DNS results at the wall and the centreline is �rst evaluated.
Relative errors with DNS value of the friction velocity u� and mean centreline velocity Uc
for all cases are summarized in Table III. Because they are sensitive to di�erent features of
the SGS models, these quantities will be discussed separately.
A look at the error on Uc reveals that the centreline velocity is underpredicted within

3–5% for all cases, leading to a satisfactory agreement. Zahrai et al. [28] reported a very
similar error level at Re� =180 using an anisotropic Smagorinsky model for grid resolutions
corresponding to the present medium resolution: from −5:26% with (	x+=70:7;	y+=8:8)
to −1:68% with (	x+=70:7;	y+=17:7). Overestimation up to 10% of the centreline velocity
is also reported by these authors when the viscous sublayer is not resolved, with a �rst mesh
point located at z+=5. A comparable error range (1–5%) is observed by H�artel and Kleiser
[4] using an optimized Smagorinsky model at three Reynolds numbers (Re�=115; 210 and
300) with a resolution comparable to the present medium resolution (	x+=80;	y+=30).
But it is to be noticed that a systematic overprediction was observed in these simulations.
The factor responsible for that discrepancy remains unclear, because of the lack of published
related studies. At a given Reynolds number, whatever SGS model is used, grid re�nement
is found to improve the results, but the use of a SGS model does not always lead to an
improvement of the coarse grid DNS results. This is in agreement with the conclusion of
H�artel and Kleiser [9], while worst results were surprisingly obtained when re�ning the grid
in the spanwise direction by Zahrai et al. [28], maybe due to the high level of grid anisotropy.
Results concerning the friction velocity are less satisfactory than those obtained on the

centreline velocity.
For the Re�=180 case, a general trend to overpredict this quantities is observed, the highest

value being obtained with the DNSc simulation. The same overprediction in coarse-grid DNS
carried out with non-dissipative numerical schemes is also reported by H�artel and Kleiser [4]
(15% error on the wall stress �w for their three Reynolds numbers), by Sarghini et al. [29]
(6% error for Re� =180, with 	x+=35:5;	y+=15:7, and 18% error for Re�=1050 with
	x+=103;	y+=25:8), and by Najjar and Tafti [25] (¡3% error for Re� =180, with same
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resolution as the present �ne grid case). This phenomena is due to the fact that coarse grid
DNS does not account for the net resolved energy drain toward the SGS scales, resulting in
increased turbulence �uctuations and in steeper velocity pro�les at the wall. The numerical
method may have a deep impact on the result of coarse grid DNS: Najjar and Tafti have
demonstrated that upwind biased scheme DNS leads to an underprediction of the wall stress,
like the second-order centred scheme on staggered mesh used in Sagaut and Tro� [10] did on
a (	x+=72;	y+=24) grid at Re� =180. The latter author also reported that the use of a
�ner grid (	x+=36;	y+=12) with its second-order method or the use of a spectral method
permit to recover the classical overprediction of the shear stress. This shows that the present
non-staggered grid algorithm provides less intrisic damping than the staggered one of Sagaut
and Tro� [10].
It was observed in Zahrai et al. [28] and in Najjar and Tafti [25] that the addition of

a SGS dissipation leads to a decrease of the wall stress. The general overprediction of the
wall stress in all the present simulations (except the MSslc-coarse grid simulation) indicates
that the SGS models are underpredicting the exact SGS dissipation rate �=−�ij �Sij. Di�erent
behaviours can also be observed for low Reynolds number LES (Re�6300): Sarghini and
Piomelli reported a general trend to underpredicting the wall stress when using Smagorinsky
and non-Lagrangian dynamic models at Re�=180, the optimized Smagorinsky model of H�artel
and Kleiser leads to underprediction within 9–14% of the friction velocity, depending on the
Reynolds number, and an underprediction of 18% of the friction coe�cient cf =2�w=u2b (ub
being the bulk velocity) at Re�=180 is reported in David [8]. But it is important to notice
that, at high Reynolds number (Re�=1050), a trend to large overprediction of the friction
velocity within 16–20% is reported by Sarghini and Piomelli using various dynamic models.
Several causes can be invoked to explain these discrepancies: numerical scheme, resolution
(i.e. computational grid), SGS model and stabilization procedure for dynamic models, and the
discrete test �lter for multi-level SGS models [25, 30].
Di�erent behaviours are observed on the Re�=395 case: some SGS models are now leading

to underprediction of the wall stress, with level error as high as −22% (Sslc, coarse grid),
while others are still overpredicting it. Unlike the low Reynolds number case, some SGS
models may lead to higher values of the friction velocity than the DNSc simulations. The
same observation is reported in Sarghini et al. [29], using a dynamic model together with a
top-hat test �lter at Re�=1050. This illustrates the fact that, by modifying the turbulent grid
scale dissipation, the SGS models can also a�ect the mean velocity pro�le and the turbulent
grid scale production, and hence generate steeper velocity pro�le near the wall, leading to a
higher error level on the wall stress.
Grid re�nement is not found to lead to a systematic improvement on the quality of the pre-

diction of the friction velocity. For the Re�=180 case, it is shown to induce an increase of the
skin friction, whatever SGS model is considered, indicating the existence of steeper gradient
at the wall. This is consistent with the LES basic assumption that a �ner grid corresponds to
an higher cut-o� frequency, then to smaller SGS stresses and a reduced subgrid viscosity. For
SGS models which were found to be underdissipative on the coarse grid, results are found
to be worst on the �ne grid. An explanation for that fact may be that SGS models are not
adaptating in a proper way to grid re�nement in the near wall region: the SGS dissipation is
found to decrease too fast. Same trends are observed at Re�=395, but, for the SGS models
which are overdissipative the coarse grid, lowering the SGS dissipation by re�ning the grid
results in an improvement of the data.
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For �ltered and dynamic models, an increase of the Reynolds number is observed to lead to
a better prediction of the friction velocity, when performing coarse grid/coarse grid and �ne
grid/�ne grid comparisons. This does not seem to be a general property of dynamic models,
since Sarghini and Piomelli reported a clear degradation of the results when increasing the
Reynolds number and coarsening the grid. Comparative analysis of the two medium resolution
cases (�ne grid at Re�=395 and coarse grid at Re�=180) does not permit to exhibit an obvious
overall improvement of the results. But, with the exception of MSslc, the levels of error are
very close for these two cases. This is to be compared with the conclusion of H�artel and
Kleiser, who found that increasing the Reynolds number, while keeping the same frequency
cut-o�, yields an improvement of the results using their optimized Smagorinsky model. Several
explanations for that discrepancy can be thought of: numerical accuracy (second-order Finite
Di�erences in present case, spectral-Chebyshev in H�artel and Kleiser [9]), Reynolds numbers
(Re�6300), and the fact that the Smagorinsky constant in H�artel et al. [10] was optimized in
each case using DNS data rather than being taken equal to a unique value or automatically
adjusted using a given self-adaptation procedure. Nevertheless, present results show that SGS
models seem to at least keep the accuracy at a given grid resolution (expressed in wall units)
when the Reynolds is increased. As already stated by previous authors H�artel et al. [2] and
Piomelli et al. [3], the main issue here is the description of the coherent motion in the near
wall region, which is associated to the production/dissipation of both grid scale and SGS
�uctuations.
Mean centreline velocity is found to be more accurately predicted than friction velocity,

whatever SGS model is considered, in a most consistent way, i.e. grid re�nement leads to an
improvement of the results. This is in agreement with conclusions of H�artel and Kleiser [4],
that dissipative SGS models perform better in the core of the channel than in the near wall
region, because turbulence is here in equilibrium, and that results on near wall �ow and core
�ow are uncoupled thanks to the existence of the logarithmic regime in the boundary layer.
Figures 1–4 compare the mean streamwise velocity pro�les in wall co-ordinates for the

di�erent computations. In agreement with H�artel and Kleiser [4], DNS and LES results com-
pare satisfactorily within the viscous sublayer (z+65) in all cases, while large discrepancies
are observed for z+¿10 at Re�=180 and z+¿5 at Re�=395. These discrepancies are mostly
due to the error on the friction velocity. No SGS model is found able to recover the correct
slope in the logarithmic layer, even at the highest Reynolds number on the �ne grid. The
same conclusion was drawn by Najjar and Tafti for Re�=180 and H�artel and Kleiser for
Re�6300. The right slope value was obtained in H�artel and Kleiser [4] only by arti�cially
lowering the SGS dissipation in an ad hoc way. It was also recovered naturally by Sarghini
et al. in all their simulations at Re�=1050. These results are consistent with Antonia et al.
[31] �nding that low-Reynolds e�ects prevent the developement of a complete logarithmic
layer in channel �ow when �+¡1000.

5.2. Turbulent quantities

Pro�les of the resolved turbulent stresses are presented in Figures 5–8. As usual, results are
referred to the computed friction velocity.
The analysis of the results related to the resolved streamwise turbulence intensity reveals

that all the computations yield the same qualitative behaviour: the turbulent stress admits a
maximum located near z+=12, in good agreement with DNS results. The value of the peak is
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Figure 1. Re�=180. Mean Velocity pro�le normalized by the friction velocity—coarse grid.
Dashed line: no model (coarse-resolution simulation), square: selective Mixed Scale model,
triangle: selective Structure Function model, circle: selective Smagorinsky model, diamond:

dynamic model with 3D test �lter, full line: DNS data.
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Figure 2. Re�=180. Mean velocity pro�le normalized by the friction
velocity—�ne grid. Caption: see Figure 1.

observed to depend strongly on the SGS model, the grid resolution and the Reynolds number.
Generally speaking, the lowest values are obtained using the dynamic Smagorinsky model.
This can be only partially explained by the observed trend to over-predict the skin friction
with that model, showing that its use lead to a lower level of �uctuations. Results obtained
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Figure 3. Re�=395. Mean velocity pro�le normalized by the friction
velocity—coarse grid. Caption: see Figure 1.
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Figure 4. Re�=395. Mean velocity pro�le normalized by the friction
velocity—�ne grid. Caption: see Figure 1.

with the various combinations of subgrid model, computational grid and Reynold number do
not make it possible to rank the models. But the general conclusion can be drawn from this
results that the selective function yields physical results whatever basic formulation for the
subgrid viscosity is used. This results are very similar to those obtained using a dynamic
Smagorinsky model.
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Figure 5. Re�=180. Resolved turbulent stresses normalized by the friction
velocity—coarse grid. Caption: see Figure 1.

6. ANALYSIS OF THE SGS MODELS

The new selective subgrid models proposed in the present papers are now assessed by looking
at their behaviour in the near-wall region. For sake of brevity, only results related to the
Re�=395 case are reported below.

6.1. Mean value of the SGS viscosity

A deeper insight into the SGS model behaviour in the near-wall region is obtained by looking
at the subgrid viscosity itself. Mean SGS viscosity pro�les, shown in logarithmic co-ordinates,
are plotted on Figures 9 and 10.
All the simulations exhibit the same qualitative behaviour, in agreement with those obtained

with dynamic models by Najjar and Tafti [25] and Cabot [32]: the SGS viscosity is almost null
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Figure 6. Re�=180. Resolved turbulent stresses normalized by the friction
velocity—�ne grid. Caption: see Figure 1.

at the solid wall, increases up to a maximum located in the bu�er region, and then decreases
when approaching the core region of the channel. Selective models are observed to decrease
faster than the dynamic model for z+¡10, resulting in negligible values in that region. It is
worth noting that the spectral dynamic model proposed by Lamballais et al. [33], which is
based on the evaluation of the local slope of the energy spectrum, has the same properties.
The present results seem to indicate that the quality of the results is not directly linked to the
ability of the SGS viscosity to scale as z+3 in the near wall region, but to decrease quickly
enough in that region to allow a good representation of the streaks. Some selective models
exhibit a cusp behaviour at the wall, which is due to the de�nition of boundary conditions
for the test �lter at the solid wall. But this cusp is observed to be of negligible amplitude,
and thus does not induce any problem.
The self-adaptation of subgrid viscosities is due to the selective function, which appear to

yield a very signi�cant improvement over the basic versions of the subgrid models. This is
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Figure 7. Re�=395. Resolved turbulent stresses normalized by the friction
velocity—coarse grid. Caption: see Figure 1.

clearly seen by looking at the wall-value of the SGS viscosity associated to the mean velocity
�eld. A second-order Taylor series expansion of the discretized versions of these models
yields:

�sgs |w �
√
2(c1 �	 |w)2

∣∣∣∣@〈u〉@z
∣∣∣∣
w

Smagorinsky

�sgs |w � c2 �	 |w	z1
∣∣∣∣@〈u〉@z

∣∣∣∣
w

Structure Function

�sgs |w � c3
(√

2
12

)1=2
�	 |3=2w 	z1

∣∣∣∣@〈u〉@z
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w

∣∣∣∣@2〈u〉@z2
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Mixed Scale (38)
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Figure 8. Re�=395. Resolved turbulent stresses normalized by the friction
velocity—�ne grid. Caption: see Figure 1.

where the subscript w denotes values taken at the wall, and 	z1 is the height of the �rst
mesh near the wall. Because the skin friction is non-zero at the wall (separation does not
occur in that �ow), the �rst two models are strictly non-vanishing at the solid boundaries.
The Mixed Scale model could predict a zero SGS viscosity at the wall if at least the three
�rst points were located in the region where the mean velocity pro�le obeys a linear law (the
computed second-order derivative term would then be equal to zero). The computed values
of the SGS viscosity demonstrate that the selective function acts as a wall-damping function,
while it does not rely on any information related to the solid walls. The mean pro�le of the
selection function is presented in Figures 11 and 12.
The mean value of the selection function is very small for z+¡10 in all the cases, providing

the desired damping of the subgrid viscosity. This can be explained by the fact that the grid
resolution is �ne enough to permit a very good direct representation of the near-wall coherent
structures, resulting in low values of the local angular �uctuation �. Outside this region, the
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Figure 9. Re�=395. Normalized SGS viscosity pro�le normalized by the friction velocity—coarse
grid. Caption: see Figure 1—solid straight lines show z+2, z+3 and z+4 slopes.
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Figure 10. Re�=395. Normalized SGS viscosity pro�le normalized by the friction velocity—�ne
grid. Caption: see Figure 1—solid straight lines show z+2, z+3 and z+4 slopes.

selection function exhibits a rapid growth, associated to a growing three-dimensionality of the
highest resolved frequencies. This growth is the result of (i) the �lling of the kinetic energy
spectrum as the wall e�ects are weakening and (ii) the coarsening of the grid resolution in
the wall-normal direction.

6.2. Subgrid dissipation

We now present results dealing with the SGS dissipation, �=−�ij �Sij, which is a better indicator
than the SGS viscosity to analyse the e�ect of the model on the computation. As proposed
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Figure 11. Re�=395. Mean pro�le of the selection function—coarse grid. Caption: see Figure 1.
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Figure 12. Re�=395. Mean pro�le of the selection function—�ne grid. Caption: see Figure 1.

in H�artel et al. [2], it is split into the sum of the dissipation related to mean strain �MS and
the redistribution of kinetic energy within the turbulence spectrum �FS:

〈�〉=〈�MS〉+〈�FS〉; 〈�MS〉=−〈�ij〉〈 �Sij〉; 〈�FS〉=−〈�′′ij �Sij ′′〉 (39)

where the �uctuating part of a dummy variable � is de�ned as �′′=�−〈�〉. Mean pro�les of
these two quantities normalized by the bulk velocity, the molecular viscosity and the channel
height in the wall-normal direction are plotted in Figures 13 and 14.
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Figure 13. Mean strain SGS dissipation 〈�MS〉 pro�le normalized by the bulk
velocity, the molecular viscosity and the channel height on the �ne (top) and coarse

(bottom) grid. Caption: see Figure 1.

A strong in�uence of both the basic SGS model and the adaptation procedure is observed
on the amplitude of �MS, but some general features are common to all the simulations, which
are all in good agreement with a priori tests of H�artel et al. [2, 4]:

• The mean strain dissipation is decreasing for z+¡10, due to the damping provided by
the self-adaptation procedure.

• The mean strain dissipation exhibits a maximum in the bu�er region (106z+620).

A very interesting result is seen by looking at the �uctuating strain dissipation pro�le: some
negative values are clearly recovered on the coarse grid when using the selective Mixed
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Figure 14. Fluctuating strain SGS dissipation 〈�FS〉 pro�le normalized by the bulk
velocity, the molecular viscosity and the channel height on the �ne (top) and coarse

(bottom) grid. Caption: see Figure 1.

Scale model. The occurence of these negative values were predicted by previous DNS a
priori tests, and corresponds to the backscatter phenomena. A very carefull analysis of the
�gures reveals that all the selective models (on the two grids) exhibit negative values (but
with very small amplitudes) in the z+≈ 10 region. As already observed by H�artel and Kleiser
[4], the Germano–Lilly dynamic model predicts a strictly positive �uctuating strain dissipation,
and is then not capable to account in a proper way for the backscatter.
It is also remarked that, as the grid is re�ned, the negative values tend to disappear, in

agreement with the DNS analysis. This is due to the fact that, on the �ne grid, the turbulent
coherent events which are responsible for the backward energy transfer are captured in a
quasi-direct manner by the simulation, and do not require parametrization.
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The capability of strictly positive subgrid viscosity SGS models to account for the backscat-
ter e�ect is now investigated by operating a new decomposition of the �uctuating strain dissi-
pation term. When a subgrid viscosity model is employed, the parametrized subgrid tensor ap-
pears as the product of the subgrid viscosity and the resolved deformation tensor. By splitting
these two terms as the sum of a mean and a �uctuating part, and inserting into Equation (39),
one obtains the following triple decomposition for 〈�FS〉:

〈�FS〉=−〈�′′ij �S
′′
ij〉

= 〈�′′sgs �S
′′
ij〉〈 �Sij〉+〈�sgs〉〈 �S

′′
ij
�S
′′
ij〉+〈�′′sgs �S

′′
ij
�S
′′
ij〉 (40)

The �rst term on the right-hand side corresponds to the transfer of energy due to the
interaction of the �uctuations of the subgrid tensor and the mean strain, the second one to
the transfer induced by the correlation between the mean subgrid viscosity and the �uctuating
velocity gradient, and the third term represents the transfer associated to the �uctuations of
the SGS tensor and the �uctuating velocity �eld. It can be noticed that only the second term
is identi�ed as a strictly positive quantity, while the other two can have negative values. Mean
pro�les of these three terms, respectively, referred to as �FS1, �FS2 and �FS3 are presented in
Figures 15–17.
An important di�erence between the Germano–Lilly dynamic procedure and the use of the

selection function is identi�ed: selective models yield negative values for both �FS1 and �FS3,
while the dynamic model predicts only strictly positive values for �FS1. Taking into account
the fact that only the components 〈 �S13〉 and 〈 �S31〉 of the mean resolved stress tensor are
non-zero, the term 〈�FS1〉 reduces to:

〈�FS1〉=−2〈�′′sgs �S
′′
13〉〈 �S13〉 (41)

This relationship shows that the origin of the reverse energy cascade is the existence of
a negative correlation of the �uctuating part of the wall-normal parametrized subgrid stress
and the wall-normal derivative of the streamwise grid-scale velocity component. The a priori
tests of H�artel and Kleiser [4] have shown that this mechanism is the one which is e�ectively
responsible for the main part of the backscatter. The fact that negative values of �FS1 are
observed for the two grids and the three models demonstrates that the capability of predicting
backscatter is an intrisic property of the selection function. That function provides a conditional
application of the SGS model, in a coherent way with the observation of Piomelli et al. [3]
that the kinetic energy transfers are associated with intermittent coherent turbulent events.
This can prevent the spurious coupling between the resolved velocity gradient and the kinetic
energy transfer which is induced by the classical subgrid viscosity models, and then permits
the capture of the backscatter by allowing the existence of a phase shift between the mean
shear and the wall-normal subgrid stress.
As previously shown in H�artel and Kleiser [4] the dynamic model is unable to avoid that

spurious coupling, and does not recover the backscatter in a physical way. But the location
of the negative peak of �FS3 seems to indicate that the dynamic procedure, by modifying the
value of Smagorinsky constant c1, is sensitive to the existence of a backscatter process in the
bu�er region.
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Figure 15. 〈�FS1〉 pro�le normalized by the bulk velocity, the molecular viscosity and the
channel height on the �ne (top) and coarse (bottom) grid. Caption: see Figure 1.

7. CONCLUSIONS

New self-adaptive SGS models have been proposed on the basis of subgrid viscosity models
(Smagorinsky model and Mixed Scale model) and the continuous selective function. The SGS
models have been written in a fully general way, which do not incorporate any information
dealing with the topology of the �ow, and have been discretized using narrow compact-stencil
discrete operators. In order to assess the capability of the resulting self-adaptive models to
yield reliable results for future industrial applications in complex geometries, simulations of a
plane channel �ow on two grids have been carried out with a second-order accurate numerical
method.
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Figure 16. 〈�FS2〉 pro�le normalized by the bulk velocity, the molecular viscosity and the
channel height on the �ne (top) and coarse (bottom) grid. Caption: see Figure 1.

That approach was found to be e�cient, in the sense that the modi�ed models are able to
capture the transition process and do not lead to relaminarization, while the basic version of
the Smagorinsky and Structure Function models do not have these properties. The proposed
selective SGS models give satisfactory results, whose quality is at least as good as those of
the dynamic Smagorinsky model. Another advantage of the selective models is that they are
well-de�ned and do not necessitate the use of a stabilization technique, as the dynamic model
does.
A very interesting fact is that the use of the selection function enables the representation

of the backscatter due to the �uctuating strain dissipation in the bu�er layer, while dynamic
model does not. The new proposed triple decomposition of that quantity reveals that this
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Figure 17. 〈�FS3〉 pro�le normalized by the bulk velocity, the molecular viscosity and the
channel height on the �ne (top) and coarse (bottom) grid. Caption: see Figure 1.

capability is due to the conditional use of the subgrid viscosity introduced by the selection
function, which can to recover a physical correlation between the mean shear and the subgrid
tensor �uctuations.
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